Abstract
<abstract><p>In this paper, we consider the following semilinear Schrödinger equation:</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{ll} -\Delta u+V(x)u = a(x)g(u)&{\mbox{for}}\; x\in \mathbb{R}^{N} ,\\ u(x)\rightarrow0&{\mbox{as}}\; |x|\rightarrow \infty , \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p>
<p>where $ a(x) > 0 $ for all $ \mathbb{R}^{N} $. Under some different superlinear conditions on $ g(u) $, we obtain the existence of solutions for the above problem. In order to regain the compactness of the Sobolev embedding, a competing condition between $ a(x) $ and $ V(x) $ is introduced.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)