Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels

Author:

Ali Amir1,Khan Abid Ullah1,Algahtani Obaid2,Saifullah Sayed1

Affiliation:

1. Department of Mathematics, University of Malakand, Chakdara, Dir(L), Khyber Pakhtunkhwa, Pakistan

2. Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

<abstract><p>In this article, we study the nonlinear sine-Gordon equation (sGE) under Mittag-Leffler and exponential decay type kernels in a fractal fractional sense. The Laplace Adomian decomposition method (LADM) is applied to investigate the sGE under the above-mentioned operators. The convergence analysis is provided for the proposed method. The results are validated by considering numerical examples with different initial conditions for both kernels and confirm the competence of the proposed technique. It is revealed that the obtained series solutions of the model with fractal fractional operators converge to the exact solutions. The numerical results converge to the particular exact solutions, proving the significance of LADM for nonlinear systems under fractal fractional derivatives. The absolute error analysis between the exact and obtained series solutions with both operators is shown in the tabulated form. The physical interpretations of the attained results with different fractal and fractional parameters are discussed in detail.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference37 articles.

1. K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974.

2. K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley and Sons Inc, 1993.

3. I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.

4. R. Hilfer, Foundations of fractional dynamics, Fractals, 3 (1995), 549–556.

5. R. Hilfer, Fractional diffusion based on Riemman–Liouville fractional derivatives, J. Phys. Chem. B, 104 (2000), 3914–3917. https://doi.org/10.1021/jp9936289

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3