Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator

Author:

Kaushik Kirti1,Kumar Anoop1,Khan Aziz2,Abdeljawad Thabet234

Affiliation:

1. Department of Mathematics and Statistics, Central University of Punjab, Bathinda 151401, India

2. Department of Mathematics and Sciences, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia

3. Department of Medical Research, China Medical University, Taichung 40402, Taiwan

4. Department of Mathematics, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul 02447, Korea

Abstract

<abstract><p>In this manuscript, the main objective is to analyze the existence, uniqueness, (EU) and stability of positive solution for a general class of non-linear fractional differential equation (FDE) with fractional differential and fractional integral boundary conditions utilizing $ \phi_p $-Laplacian operator. To continue, we will apply Green's function to determine the suggested FDE's equivalent integral form. The Guo-Krasnosel'skii fixed point theorem and the properties of the $ p $-Laplacian operator are utilized to derive the existence results. Hyers-Ulam (HU) stability is additionally evaluated. Further, an application is presented to validate the effectiveness of the result.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference45 articles.

1. I. Podlubny, Fractional differential equations, Academic Press, 1998.

2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006.

3. J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Springer 2007. https://doi.org/10.1007/978-1-4020-6042-7

4. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2010. https://doi.org/10.1142/p614

5. J. F. Gómez-Aguila, A. Atangana, Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense, Eur. Phys. J. Plus, 132 (2017) 100. https://doi.org/10.1140/epjp/i2017-11371-6

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3