Deep convolutional neural network-based Leveraging Lion Swarm Optimizer for gesture recognition and classification

Author:

Maashi Mashael12,Al-Hagery Mohammed Abdullah3,Rizwanullah Mohammed4,Osman Azza Elneil4

Affiliation:

1. Department of Software Engineering, College of Computer and Information Sciences, King Saud University, PO box 103786, Riyadh 11543, Saudi Arabia

2. King Salman Center for Disability Research, Riyadh, Saudi Arabia

3. Department of Computer Science, College of Computer, Qassim University, Saudi Arabia

4. Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia

Abstract

<abstract> <p>Vision-based human gesture detection is the task of forecasting a gesture, namely clapping or sign language gestures, or waving hello, utilizing various video frames. One of the attractive features of gesture detection is that it makes it possible for humans to interact with devices and computers without the necessity for an external input tool like a remote control or a mouse. Gesture detection from videos has various applications, like robot learning, control of consumer electronics computer games, and mechanical systems. This study leverages the Lion Swarm optimizer with a deep convolutional neural network (LSO-DCNN) for gesture recognition and classification. The purpose of the LSO-DCNN technique lies in the proper identification and categorization of various categories of gestures that exist in the input images. The presented LSO-DCNN model follows a three-step procedure. At the initial step, the 1D-convolutional neural network (1D-CNN) method derives a collection of feature vectors. In the second step, the LSO algorithm optimally chooses the hyperparameter values of the 1D-CNN model. At the final step, the extreme gradient boosting (XGBoost) classifier allocates proper classes, i.e., it recognizes the gestures efficaciously. To demonstrate the enhanced gesture classification results of the LSO-DCNN approach, a wide range of experimental results are investigated. The brief comparative study reported the improvements in the LSO-DCNN technique in the gesture recognition process.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference21 articles.

1. C. Dewi, A. P. S Chen, H. J. Christanto, Deep learning for highly accurate hand recognition based on Yolov7 model, Big Data Cogn. Comput., 7 (2023), 53. https://doi.org/10.3390/bdcc7010053

2. J. John, S. P. Deshpande, Hand gesture identification using deep learning and artificial neural networks: A review, Computational Intelligence for Engineering and Management Applications: Select Proceedings of CIEMA 2022, 2023,389–400. https://doi.org/10.1007/978-981-19-8493-8_30

3. R. Padmavathi, Expressive and Deployable Hand Gesture Recognition for Sign Way of Communication for Visually Impaired People, 2021.

4. A. Agarwal, A. Das, Facial Gesture Recognition Based Real Time Gaming for Physically Impairment. In Artificial Intelligence: First International Symposium, ISAI 2022, 2023, Haldia, India, February 17–22, 2022, Revised Selected Papers (256–264). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-22485-0_23

5. V. Gorobets, C. Merkle, A. Kunz, Pointing, pairing and grouping gesture recognition in virtual reality, In Computers Helping People with Special Needs: 18th International Conference, ICCHP-AAATE 2022, Lecco, Italy, July 11–15, 2022, Proceedings, Part I (313–320), Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-08648-9_36

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3