Author:
Karamseraji Sima, ,Ziari Shokrollah,Ezzati Reza,
Abstract
<abstract><p>This paper is concerned with obtaining approximate solutions of fuzzy Fredholm integral equations using Picard iteration method and bivariate Bernstein polynomials. We first present the way to approximate the value of the multiple integral of any fuzzy-valued function based on the two dimensional Bernstein polynomials. Then, it is used to construct the numerical iterative method for finding the approximate solutions of two dimensional fuzzy integral equations. Also, the error analysis and numerical stability of the method are established for such fuzzy integral equations considered here in terms of supplementary Lipschitz condition. Finally, some numerical examples are considered to demonstrate the accuracy and the convergence of the method.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference56 articles.
1. S. Abbasbandy, T. Allahviranloo, The Adomian decomposition method applied to the fuzzy system of Fredholm integral equations of the second kind, Int. J. Uncertain. Fuzz., 14 (2006), 101–110. https://doi.org/10.1142/S0218488506003868
2. S. Abbasbandy, E. Babolian, M. Alavi, Numerical method for solving linear Fredholm fuzzy integral equations of the second kind, Chaos Soliton. Fract., 31 (2007), 138–146. https://doi.org/10.1016/j.chaos.2005.09.036
3. K. Akhavan Zakeri, S. Ziari, M. A. Fariborzi Araghi, I. Perfilieva, Efficient numerical solution to a bivariate nonlinear fuzzy fredholm integral equation, IEEE T. Fuzzy Syst., 2019. https://doi.org/10.1109/TFUZZ.2019.2957100
4. G. A. Anastassiou, Fuzzy Mathematics: Approximation Theory. Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-11220-1
5. H. Attari, Y. Yazdani, A computational method for for fuzzy Volterra-Fredholm integral equations, Fuzzy Inf. Eng., 2 (2011), 147–156. https://doi.org/10.1007/s12543-011-0073-x
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献