Statistical inference of the Birnbaum-Saunders model using adaptive progressively hybrid censored data and its applications

Author:

Elshahhat Ahmed1,Alotaibi Refah2,Nassar Mazen34

Affiliation:

1. Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt

2. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia

3. Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Department of Statistics, Faculty of Commerce, Zagazig University, Egypt

Abstract

<abstract><p>Lately, the Birnbaum-Saunders distribution has gained a lot of attention, mainly due to its different density shapes and the non-monotonicity property of its failure rates. This work considered some estimation issues for the Birnbaum-Saunders distribution using adaptive progressive Type-Ⅱ hybrid censoring. Point and interval estimations were performed employing both conventional and Bayesian methodologies. In addition to estimating the model parameters, we obtained point and interval estimates for the reliability and hazard rate functions. We looked at the method of maximum likelihood as a classical approach, and its asymptotic traits were employed to obtain approximate confidence ranges. From a Bayesian point of perspective, we considered the squared error loss function to obtain the point estimates of the various parameters. The Bayes and highest posterior density credible intervals were additionally determined. For the complex form of the posterior distribution, Bayes estimates and credible intervals were computed by sampling from the posterior distribution through the Markov chain Monte Carlo procedure. For assessing the performance of all of these estimators, a Monte Carlo simulation was employed. Several statistical standards were applied to check the effectiveness of various estimates for multiple levels of censoring with small, moderate, and large sample sizes. Finally, two scenarios for applications were given in order to highlight the usefulness of the supplied approaches.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3