Abstract
<abstract><p>In the present paper, we study Min matrix $ \mathcal{A}_{min} = \left[a_{min\left(i, j\right)}\right]_{i, j = 1}^n $, where $ a_s $'s are the elements of a real sequence $ \left\lbrace a_s\right\rbrace $. We first obtain a recurrence relation for the characteristic polynomial for matrix $ \mathcal{A}_{min} $, and some relations between the coefficients of its characteristic polynomial. Next, we show that the sequence of the characteristic polynomials of the $ i \times i \left(i \leq n\right) $ Min matrices satisfies the Sturm sequence properties according to different required conditions of the sequence $ \left\lbrace a_s\right\rbrace $. Using Sturm's Theorem, we get some results about the eigenvalues, such as the number of eigenvalues in an interval. Thus, we obtain the number of positive and negative eigenvalues of Min matrix $ \mathcal{A}_{min} $. Finally, we give an example to illustrate our results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference32 articles.
1. G. Pólya, G. Szegö, Problems and theorems in analysis II, Berlin: Springer, 1998. http://dx.doi.org/10.1007/978-3-642-61905-2
2. M. Catalani, A particular matrix and its relationships with Fibonacci numbers, arXiv: math/0209249.
3. R. Bhatia, Infinitely divisible matrices, Am. Math. Mon., 113 (2006), 221–235. http://dx.doi.org/10.2307/27641890
4. R. Bhatia, Min matrices and mean matrices, Math. Intelligencer, 33 (2011), 22–28. http://dx.doi.org/10.1007/s00283-010-9194-z
5. C. Da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 200 (2007), 283–286. http://dx.doi.org/10.1016/j.cam.2005.08.047
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献