Boosting task scheduling in IoT environments using an improved golden jackal optimization and artificial hummingbird algorithm

Author:

Attiya Ibrahim12,Al-qaness Mohammed A. A.34,Elaziz Mohamed Abd1567,Aseeri Ahmad O.8

Affiliation:

1. Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

2. Faculty of Computer Science and Engineering, New Mansoura University, New Mansoura, Egypt

3. College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China

4. Zhejiang Optoelectronics Research Institute, Jinhua 321004, China

5. Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates

6. MEU Research Unit, Middle East University, Amman 11831, Jordan

7. Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon

8. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

<abstract><p>Applications for the internet of things (IoT) have grown significantly in popularity in recent years, and this has caused a huge increase in the use of cloud services (CSs). In addition, cloud computing (CC) efficiently processes and stores generated application data, which is evident in the lengthened response times of sensitive applications. Moreover, CC bandwidth limitations and power consumption are still unresolved issues. In order to balance CC, fog computing (FC) has been developed. FC broadens its offering of CSs to target end users and edge devices. Due to its low processing capability, FC only handles light activities; jobs that require more time will be done via CC. This study presents an alternative task scheduling in an IoT environment based on improving the performance of the golden jackal optimization (GJO) using the artificial hummingbird algorithm (AHA). To test the effectiveness of the developed task scheduling technique named golden jackal artificial hummingbird (GJAH), we conducted a large number of experiments on two separate datasets with varying data sizing. The GJAH algorithm provides better performance than those competitive task scheduling methods. In particular, GJAH can schedule and carry out activities more effectively than other algorithms to reduce the makespan time and energy consumption in a cloud-fog computing environment.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3