Author:
Alnimer Malak,Al-Zoubi Khaldoun,Al-Dolat Mohammed
Abstract
<abstract><p>Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly $ J_{gr} $ -semiprime submodules. For example, we give a characterization of graded weakly $ J_{gr} $-semiprime submodules. Also, we find some relations between graded weakly $ J_{gr} $-semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly $ J_{gr} $-semiprime submodules are investigated. A proper graded submodule $ U $ of $ \mathcal{D} $ is said to be a graded weakly $ J_{gr} $-semiprime submodule of $ \mathcal{D} $ if whenever $ r_{g}\in h(\mathcal{A}), $ $ m_{h}\in h(\mathcal{D}) $ and $ n\in \mathbb{Z} ^{+} $ with $ 0\neq r_{g}^{n}m_{h}\in U $, then $ r_{g}m_{h}\in U+J_{gr}(\mathcal{D}) $, where $ J_{gr}(\mathcal{D}) $ is the graded Jacobson radical of $ \mathcal{D}. $</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference18 articles.
1. K. Al-Zoubi, A. Al-Qderat, Some properties of graded comultiplication modules, Open Math., 15 (2017), 187–192. https://doi.org/10.1515/math-2017-0016
2. K. Al-Zoubi, R. Abu-Dawwas, I. Al-Ayyoub, Graded semiprime submodules and graded semi-radical of graded submodules in graded modules, Ricerche Math., 66 (2017), 449–455. https://doi.org/10.1007/s11587-016-0312-x
3. K. Al-Zoubi, S. Alghueiri, On graded $J_gr$-semiprime submodules, Ital. J. Pure Appl. Math., 46 (2021), 361–369.
4. S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33 (2006), 3–7.
5. S. E. Atani, R. E. Atani, Graded multiplication modules and the graded ideal $\theta _{g}(M)$, Turk. J. Math., 33 (2009), 1–9.