Optimal feedback control for a class of fed-batch fermentation processes using switched dynamical system approach

Author:

Wu Xiang, ,Hou Yuzhou,Zhang Kanjian, , , ,

Abstract

<abstract><p>This paper considers an optimal feedback control problem for a class of fed-batch fermentation processes. Our main contributions are as follows. Firstly, a dynamic optimization problem for fed-batch fermentation processes is modeled as an optimal control problem of switched dynamical systems, and a general state-feedback controller is designed for this dynamic optimization problem. Unlike the existing switched dynamical system optimal control problem, the state-dependent switching method is applied to design the switching rule, and the structure of this state-feedback controller is not restricted to a particular form. Then, this problem is transformed into a mixed-integer optimal control problem by introducing a discrete-valued function. Furthermore, each of these discrete variables is represented by using a set of 0-1 variables. By using a quadratic constraint, these 0-1 variables are relaxed such that they are continuous on the closed interval $ [0, 1] $. Accordingly, the original mixed-integer optimal control problem is transformed intoa nonlinear parameter optimization problem. Unlike the existing works, the constraint introduced for these 0-1 variables are at most quadratic. Thus, it does not increase the number of locally optimal solutions of the original problem. Next, an improved gradient-based algorithm is developed based on a novel search approach, and a large number of numerical experiments show that this novel search approach can effectively improve the convergence speed of this algorithm, when an iteration is trapped to a curved narrow valley bottom of the objective function. Finally, numerical results illustrate the effectiveness of this method developed by this paper.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Logic based Fed Batch Fermentation Control Scheme for Plant Culturing;2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON);2022-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3