Affiliation:
1. Department of Mathematics, Berhampur University, Bhanja Bihar 760007, Odisha, India
2. Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca 400114, Romania
Abstract
In this paper, we derive several fuzzy differential subordination and fuzzy differential superordination results for analytic functions $ \mathcal{M}_{\xi, \beta}^{s, \gamma} $, which involve the extended Mittag-Leffler function and the Pascal distribution series. We also investigate and introduce a class $ \mathcal{MB}_{\xi, \beta}^{F, s, \gamma}(\rho) $ of analytic and univalent functions in the open unit disc $ \mathcal{D} $ by employing the newly defined operator $ \mathcal{M}_{\xi, \beta}^{s, \gamma} $. We determine a specific relationship of inclusion for this class. Further, we establish prerequisites for a function role in serving as both the fuzzy dominant and fuzzy subordinant of the fuzzy differential subordination and superordination, respectively. Some novel results that are sandwich-type can be found here.
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference42 articles.
1. T. Bulboacă, Differential subordinations and superordinations: recent results, House of Scientific Book Publishing, 2005.
2. S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, CRC Press, 2000. https://doi.org/10.1201/9781482289817
3. M. G. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha(x)}$, C. R. Hebd. Séances Acad. Sci., 137 (1903), 554–558.
4. M. G. Mittag-Leffler, Sur la représentation analytique d'une fonction monogene (cinquieme note), Acta Math., 29 (1905), 101–181.
5. A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. https://doi.org/10.2298/FIL1607075A