Abstract
<abstract><p>The Moreno-García cosine product is extended to evaluate an extensive number of trigonometric products previously published. The products are taken over finite and infinite domains defined in terms of the Hurwitz-Lerch Zeta function, which can be simplified to composite functions in special cases of integer values of the parameters involved. The results obtained include generalizations of finite and infinite products cosine functions, in certain cases raised to a complex number power.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference19 articles.
1. S. G. Moreno, E. M. García, New infinite products of cosines and Viète-like formulae, Mathematics Magazine, 86 (2013), 15–25. http://doi.org/10.4169/math.mag.86.1.015
2. F. Viète, Variorum de Rebus Mathematicis Responsorum Liber VIII, Capvt XVIII, 1593,398–400.
3. L. Berggren, J. Borwein, P. Borwein, Pi: a source book, 3 Eds., New York: Springer, 2004. https://doi.org/10.1007/978-1-4757-4217-6
4. R. Remmert, Classical topics in complex function theory, New York: Springer, 1998. https://doi.org/10.1007/978-1-4757-2956-6
5. A. Bayad, T. Kim, Higher recurrences for Apostol-Bernoulli-Euler numbers, Russ. J. Math. Phys., 19 (2012), 1–10. https://doi.org/10.1134/S1061920812010013