Abstract
<abstract><p>Limit theorems of sub-linear expectations are challenging field that has attracted widespread attention in recent years. In this paper, we establish some results on complete integration convergence for weighted sums of arrays of rowwise extended negatively dependent random variables under sub-linear expectations. Our results generalize the complete moment convergence of the probability space to the sub-linear expectation space.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference19 articles.
1. S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Sto. Anal. Appl., 2 (2006), 541-567.
2. S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 118 (2008), 2223-2253.
3. S. G. Peng, A new central limit theorem under sub-linear expectations, (2008), arXiv: 0803.2656.
4. S. G. Peng, Law of large numbers and central limit theorem under nonlinear expectations, Probab. Uncertain. Quant. Risk, 4 (2007), 4.
5. L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, (2016), arXiv: 1608.00710.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献