Author:
Baleanu Dumitru, ,Shiri Babak, , ,
Abstract
<abstract><p>Terminal value problems for systems of fractional differential equations are studied with an especial focus on higher-order systems. Discretized piecewise polynomial collocation methods are used for approximating the exact solution. This leads to solving a system of nonlinear equations. For solving such a system an iterative method with a required tolerance is introduced and analyzed. The existence of a unique solution is guaranteed with the aid of the fixed point theorem. Order of convergence for the given numerical method is obtained. Numerical experiments are given to support theoretical results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference21 articles.
1. I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science, Amsterdam, 2006.
3. M. E. Ahmed, M. A. Khan, Modeling and analysis of the polluted lakes system with various fractional approaches, Chaos Soliton. Fract., 134 (2020), 109720. http://doi.org/10.1016/j.chaos.2020.109720
4. L. Song, S. Xu, J. Yang, Dynamical models of happiness with fractional order, Commun. Nonlinear Sci., 15 (2010), 616–628. http://doi.org/10.1016/j.cnsns.2009.04.029
5. S. Abbas, V. S. Erturk, S. Momani, Dynamical analysis of the Irving-Mullineux oscillator equation of fractional order, Signal Process., 102 (2014), 171–176. http://doi.org/10.1016/j.sigpro.2014.03.019
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献