Affiliation:
1. Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
2. Department of Mathematics, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
Abstract
<abstract><p>We explore the local dynamical characteristics, chaos and bifurcations of a two-dimensional discrete laser model in $ \mathbb{R}_+^2 $. It is shown that for all $ a $, $ b $, $ c $ and $ p $, model has boundary fixed point $ P_{0y}(0, \frac{p}{c}) $, and the unique positive fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $ if $ p > \frac{b c}{a} $. Further, local dynamical characteristics with topological classifications for the fixed points $ P_{0y}(0, \frac{p}{c}) $ and $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $ have explored by stability theory. It is investigated that flip bifurcation exists for the boundary fixed point $ P_{0y}(0, \frac{p}{c}) $, and also there exists a flip bifurcation if parameters vary in a small neighborhood of the unique positive fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $. Moreover, it is also explored that for the fixed point $ P^+_{xy}(\frac{ap-bc}{ab}, \frac{b}{a}) $, laser model undergoes a Neimark-Sacker bifurcation, and in the meantime stable invariant curve appears. Numerical simulations are implemented to verify not only obtain results but also exhibit complex dynamics of period $ -2 $, $ -3 $, $ -4 $, $ -5 $, $ -8 $ and $ -9 $. Further, maximum lyapunov exponents along with fractal dimension are computed numerically to validate chaotic behavior of the laser model. Lastly, feedback control method is utilized to stabilize chaos exists in the model.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference25 articles.
1. J. C. Ion, Laser processing of engineering materials: principles, procedure and industrial application, Elsevier, 2005.
2. Z. X. Guo, S. Kumar, Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media, Appl. Opt., 40 (2001), 3156–3163. https://doi.org/10.1364/AO.40.003156
3. X. Y. Jiang, C. M. Soukoulis, Time dependent theory for random lasers, Phys. Rev. Lett., 85 (2000), 70. https://doi.org/10.1103/PhysRevLett.85.70
4. A. R. Jha, Infrared technology: applications to electro-optics, photonic devices and sensors, New York: Wiley, 2000.
5. B. A. Lengyel, Introduction to laser physics, New York: Wiley, 1966.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献