Abstract
<abstract><p>We show ideal convergence ($ I $-convergence), ideal Cauchy ($ I $-Cauchy) sequences, $ I^* $-convergence and $ I^* $-Cauchy sequences for double sequences in fuzzy metric spaces. We define the $ I $-limit and $ I $-cluster points of a double sequence in these spaces. Afterward, we provide certain fundamental properties of the aspects. Lastly, we discuss whether the phenomena should be further investigated.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference28 articles.
1. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.
2. H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
3. I. J. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66 (1959), 361–375. https://doi.org/10.1080/00029890.1959.11989303
4. A. R. Freedman, J. J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293–305. https://doi.org/10.2140/pjm.1981.95.293
5. I. J. Maddox, Elements of functional analysis, Cambrige: Cambrige University Press, 1970.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献