Abstract
<abstract><p>We introduced the $ q $-Picard, the $ q $-Picard-Cauchy, the $ q $-Gauss-Weierstrass, and the $ q $-truncated Picard singular integrals. Using the last three mentioned integrals, the orders of approximation for functions from a generalized Hölder space were determined, both in the $ L^{p} $-norm and in the generalized Hölder-norm.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference27 articles.
1. G. A. Anastassiou, R. A. Mezei, Uniform convergence with rates of general singular operators, Cubo, 15 (2013), 1–19. https://doi.org/10.4067/S0719-06462013000200001
2. G. A. Anastassiou, S. G. Gal, Geometric and approximation properties of some singular integrals in the unit disk, J. Inequal. Appl., 2006, 1–19. https://doi.org/10.1155/JIA/2006/17231
3. G. A. Anastassiou, A. Aral, Generalized Picard singular integrals, Comput. Math. Appl., 57 (2009), 821–830. https://doi.org/10.1016/j.camwa.2008.09.026
4. K. Bogalska, E. Gojtka, M. Gurdek, L. Rempulska, The Picard and the Gauss-Weierstrass singular integrals of functions of two variables, Matematiche, 52 (1997), 71–85.
5. E. Deeba, R. N. Mohapatra, R. S. Rodriguez, On the degree of approximation of some singular integrals, Rend. Mat. Appl., 7 (1988), 345–355.