Author:
Sadiq Shazia, ,Rehman Mujeeb ur
Abstract
<abstract><p>In this paper, a numerical method is presented to solve fractional boundary value problems. In fractional calculus, the modelling of natural phenomenons is best described by fractional differential equations. So, it is important to formulate efficient and accurate numerical techniques to solve fractional differential equations. In this article, first, we introduce $ \psi $-shifted Chebyshev polynomials then project these polynomials to formulate $ \psi $-shifted Chebyshev operational matrices. Finally, these operational matrices are used for the solution of fractional boundary value problems. The convergence is analysed. It is observed that solution of non-integer order differential equation converges to corresponding solution of integer order differential equation. Finally, the efficiency and applicability of method is tested by comparison of the method with some other existing methods.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference44 articles.
1. M. Dalir, M. Bashour, Applications of fractional calculus, Applied Mathematical Sciences, 4 (2010), 1021–1032.
2. P. Agarwal, R. Agarwal, M. Ruzhansky, Special functions and analysis of differential equations, Boca Raton: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429320026
3. M. Ruzhansky, Y. Cho, P. Agarwal, I. Area, Advances in real and complex analysis with applications, Singapore: Birkhäuser, 2017. http://dx.doi.org/10.1007/978-981-10-4337-6
4. P. Agarwal, D. Baleanu, Y. Chen, S. Momani, J. Machado, Fractional calculus, Singapore: Springer, 2019. http://dx.doi.org/10.1007/978-981-15-0430-3
5. Y. Chen, X. Ke, Y. Wei, Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis, Appl. Math. Comput., 251, (2015), 475–488. http://dx.doi.org/10.1016/j.amc.2014.11.079
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献