Affiliation:
1. School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China
2. Hebei International Joint Research Center for Mathematics and Interdisciplinary Science, Shijiazhuang 050024, China
Abstract
<abstract><p>For two graphs $ G_1 $ and $ G_2 $, the connected size Ramsey number $ {\hat{r}}_c(G_1, G_2) $ is the smallest number of edges of a connected graph $ G $ such that if each edge of $ G $ is colored red or blue, then $ G $ contains either a red copy of $ G_1 $ or a blue copy of $ G_2 $. Let $ nK_2 $ be a matching with $ n $ edges and $ P_4 $ a path with four vertices. Rahadjeng, Baskoro, and Assiyatun [Procedia Comput. Sci. 74 (2015), 32-37] conjectured that $ \hat{r}_{c}(nK_2, P_4) = 3n-1 $ if $ n $ is even, and $ \hat{r}_{c}(nK_2, P_4) = 3n $ otherwise. We verify the conjecture in this short paper.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference26 articles.
1. H. Assiyatun, B. Rahadjeng, E. T. Baskoro, The connected size Ramsey number for matchings versus small disconnected graphs, Electron. J. Graph Theory Appl., 7 (2019), 113–119. http://dx.doi.org/10.5614/ejgta.2019.7.1.9
2. J. Beck, On size Ramsey number of paths, trees, and circuits. Ⅰ, J. Graph Theory, 7 (1983), 115–129. https://doi.org/10.1002/jgt.3190070115
3. J. A. Bondy, U. S. R. Murty, Graph theory, Springer, 2008. https://doi.org/10.1007/978-1-84628-970-5
4. S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau, R. H. Schelp, Ramsey-minimal graphs for multiple copies, Indag. Math. (N.S.), 81 (1978), 187–195. https://doi.org/10.1016/1385-7258(78)90036-7
5. A. Davoodi, R. Javadi, A. Kamranian, G. Raeisi, On a conjecture of Erdős on size Ramsey number of star forests, arXiv: 2111.02065, 2021. Available from: https://arXiv.org/abs/2111.02065
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献