Toeplitz operators on two poly-Bergman-type spaces of the Siegel domain $ D_2 \subset \mathbb{C}^2 $ with continuous nilpotent symbols

Author:

Hernández-Eliseo Yessica1,Ramírez-Ortega Josué2,Hernández-Zamora Francisco G.2

Affiliation:

1. CONAHCYT-CIMAT Unidad Mérida, Parque Científico y Tecnológico de Yucatán, KM 5.5 Carretera Sierra Papacal-Chuburná Puerto, Sierra Papacal; Mérida, Yucatán, 97302, México

2. Facultad de Matemáticas, Universidad Veracruzana, Paseo 112, Sección 2 SN, Col. Nuevo Xalapa, Xalapa-Eqz, CP 91097, México

Abstract

<abstract><p>We studied Toeplitz operators acting on certain poly-Bergman-type spaces of the Siegel domain $ D_{2} \subset \mathbb{C}^{2} $. Using continuous nilpotent symbols, we described the $ C^* $-algebras generated by such Toeplitz operators. Bounded measurable functions of the form $ \tilde{c}(\zeta) = c(\text{Im}\, \zeta_{1}, \text{Im}\, \zeta_{2} - |\zeta_1|^{2}) $ are called nilpotent symbols. In this work, we considered symbols of the form $ \tilde{a}(\zeta) = a(\text{Im}\, \zeta_1) $ and $ \tilde{b}(\zeta) = b(\text{Im}\, \zeta_2 -|\zeta_1|^{2}) $, where both limits $ \lim\limits_{s\rightarrow 0^+} b(s) $ and $ \lim\limits_{s\rightarrow +\infty} b(s) $ exist, and $ a $ belongs to the set of piece-wise continuous functions on $ \overline{\mathbb{R}} = [-\infty, +\infty] $ and with one-sided limits at $ 0 $. We described certain $ C^* $-algebras generated by such Toeplitz operators that turned out to be isomorphic to subalgebras of $ M_n(\mathbb{C}) \otimes C(\overline{\Pi}) $, where $ \overline{\Pi} = \overline{ \mathbb{R}} \times \overline{ \mathbb{R}}_+ $ and $ \overline{\mathbb{R}}_+ = [0, +\infty] $.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference27 articles.

1. N. L. Vasilevski, On the structure of Bergman and poly-Bergman spaces, Integr. Equat. Oper. Th., 33 (1999), 471–488. https://doi.org/10.1007/BF01291838

2. N. L. Vasilevski, Poly-Fock spaces, In: V. M. Adamyan (et al. eds.) Differential operators and related topics, Operator Theory Advances and Applications 117, Basel, Springer, 2000,371–386. https://doi.org/10.1007/978-3-0348-8403-7_28

3. M. B. Balk, Polyanaltic functions and their generalizations, In: A. A. Gonchar (et al. eds.) Complex analysis Ⅰ: Entire and meromorphic functions and their generalization, Encyclopaedia of Mathematical Sciences, Berlin, Springer, 85 (1997). https://doi.org/10.1007/978-3-662-03396-8

4. R. Quiroga-Barranco, N. L. Vasilevski, Commutative $C^*$-algebras of Toeplitz operators on the unit ball, Ⅰ. Bargmann type transforms and spectral representations of Toeplitz operators, Integr. Equat. Oper. Th., 59 (2007), 379–419. https://doi.org/10.1007/s00020-007-1537-6

5. R. Quiroga-Barranco, N. L. Vasilevski, Commutative $C^*$-algebras of Toeplitz operators on the unit ball, Ⅱ. Geometry of the level sets of symbols, Integr. Equat. Oper. Th., 60 (2008), 89–132. https://doi.org/10.1007/s00020-007-1540-y

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3