Sensor fault estimation for hydraulic servo actuator based on sliding mode observer

Author:

Djordjevic Vladimir1,Dubonjic Ljubisa1,Morato Marcelo Menezes23,Prsic Dragan1,Stojanovic Vladimir1

Affiliation:

1. Faculty of Mechanical and Civil Engineering, University of Kragujevac, 36000 Kraljevo, Serbia

2. Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, Florianópolis, Brazil

3. Univ. Grenoble-Alpes, CNRS, Grenoble INPT, GIPSA-Lab, 38000 Grenoble, France

Abstract

<abstract><p>In this paper, the mechanism for the fault estimation (FE) problem for a hydraulic servo actuator (HSA) with sensor faults is investigated. To deal with the design issues, we transformed the nonlinear model of HSA into a new coordinate system to estimate the sensor faults. In the new coordinate system, the Lipschitz conditions and system uncertainties are also considered. Then, we implement a sliding mode observer (SMO) approach to introduce the transformation scheme to make the system rational. The proposed fault estimation scheme essentially transforms the original system into two subsystems where the first one includes system uncertainties, but is free from sensor faults and the second one has sensor faults but without uncertainties. The effects of system uncertainties on the estimation errors of states and faults are minimized by integrating an $ H_\infty $ uncertainty attenuation level into the observer. The sufficient conditions for the state estimation error to be bounded and satisfy a prescribed $ H_\infty $ performance are derived and expressed as a linear matrix inequality (LMI) optimization problem. Finally, the numerical example with simulation results is provided to validate the practicability and efficacy of the developed control strategy.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3