A mathematical model for assessing the impact of dual-level toxicity on aquatic biospecies and its optimal control analysis

Author:

Achema K. O.1,Okuonghae D.2,Alhassan C. J.3

Affiliation:

1. Department of Mathematics and Statistics, Confluence University of Science and Technology, Osara, Kogi State, Nigeria

2. Department of Mathematics, University of Benin, Benin City, Nigeria

3. Department of Mathematics and Computer Science, Edo State University, Uzairue, Edo State, Nigeria

Abstract

<abstract><p>Ecological models have become paramount for assessing the pesticides effect on the function and structure of aquatic ecosystems. The most paramount concerns are assessments of pesticides/toxicants that have the potential to change from one form to another when they are released into the aquatic ecosystem. Optimal control model is formulated from the nonlinear mathematical model for assessing dual-level toxicity of pesticides effect on aquatic species with the goal to minimizing the pesticides concentration in the aquatic species environment and maximizing the aquatic species population. Two control functions were introduced to represent a policy of not allowing pesticides concentration into the aquatic species environment and the removal of those pesticides that are already in the aquatic environment. The resulting optimal controls are characterized in terms of the optimality system and it was solved quantitatively for different scenarios using both forward and backward sweep iterative method with Runge-Kutta fourth order scheme. The result of the system showed different levels of the aquatic species population stability due to the different levels of the pesticides influx. It was also observed that the degradation of pesticides concentration causes pesticides concentration to vary significantly between the water body and the sediment region with significant level effect on the aquatic species.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and analysis of stability and control for a small unmanned aerial vehicle;International Journal of Dynamics and Control;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3