Robust region-based active contour models via local statistical similarity and local similarity factor for intensity inhomogeneity and high noise image segmentation

Author:

Hussain Ibrar1,Ali Haider123,Khan Muhammad Shahkar123,Niu Sijie123,Rada Lavdie123

Affiliation:

1. Department of Mathematics, University of Peshawar, Peshawar

2. School of Information Science and Engineering, University of Jinan, China

3. Bahcesehir University, Istanbul, Turkey

Abstract

<p style='text-indent:20px;'>In this paper, we design a novel variational segmentation method for two types of segmentation problems, namely, global segmentation (all objects /features in a given image are aimed to be segmented) and selective/ interactive segmentation (an objects /feature of interest in a given image is aimed to be segmented) for inhomogeneous and severe additive noisy images. The proposed segmentation models implement a local denoising constraint, capable to tackle efficiently noise/outliers and coping with intensity inhomogeneity issues, combined with local similarity factor based on spatial distances and intensity differences in the local region that guides accurately the level set function to distinguish between outliers and minute important details. Furthermore, to exhibit the accuracy of the proposed models, an experimental comparison is inducted and shown comparisons with state-of-art models on synthetic images, outdoor images, and medical images.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3