Affiliation:
1. Department of Mathematics, University of Peshawar, Peshawar
2. School of Information Science and Engineering, University of Jinan, China
3. Bahcesehir University, Istanbul, Turkey
Abstract
<p style='text-indent:20px;'>In this paper, we design a novel variational segmentation method for two types of segmentation problems, namely, global segmentation (all objects /features in a given image are aimed to be segmented) and selective/ interactive segmentation (an objects /feature of interest in a given image is aimed to be segmented) for inhomogeneous and severe additive noisy images. The proposed segmentation models implement a local denoising constraint, capable to tackle efficiently noise/outliers and coping with intensity inhomogeneity issues, combined with local similarity factor based on spatial distances and intensity differences in the local region that guides accurately the level set function to distinguish between outliers and minute important details. Furthermore, to exhibit the accuracy of the proposed models, an experimental comparison is inducted and shown comparisons with state-of-art models on synthetic images, outdoor images, and medical images.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献