Affiliation:
1. Department of Mathematics, Indian Institute of Technology Roorkee-IIT Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India
Abstract
<p style='text-indent:20px;'>In this article, we study an inverse problem for the following convective Brinkman-Forchheimer (CBF) equations:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \boldsymbol{u}_t-\mu \Delta\boldsymbol{u}+(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}+\alpha\boldsymbol{u}+\beta|\boldsymbol{u}|^{r-1}\boldsymbol{u}+\nabla p = \boldsymbol{F}: = \boldsymbol{f} g, \ \ \ \nabla\cdot\boldsymbol{u} = 0, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in bounded domains <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset\mathbb{R}^d $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M2">\begin{document}$ d = 2, 3 $\end{document}</tex-math></inline-formula>) with smooth boundary, where <inline-formula><tex-math id="M3">\begin{document}$ \alpha, \beta, \mu>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ r\in[1, \infty) $\end{document}</tex-math></inline-formula>. The CBF equations describe the motion of incompressible fluid flows in a saturated porous medium. The inverse problem under our consideration consists of reconstructing the vector-valued velocity function <inline-formula><tex-math id="M5">\begin{document}$ \boldsymbol{u} $\end{document}</tex-math></inline-formula>, the pressure gradient <inline-formula><tex-math id="M6">\begin{document}$ \nabla p $\end{document}</tex-math></inline-formula> and the vector-valued function <inline-formula><tex-math id="M7">\begin{document}$ \boldsymbol{f} $\end{document}</tex-math></inline-formula>. We prove the well-posedness result (existence, uniqueness and stability) of an inverse problem for 2D and 3D CBF equations with the final overdetermination condition using Schauder's fixed point theorem for arbitrary smooth initial data. The well-posedness results hold for <inline-formula><tex-math id="M8">\begin{document}$ r\geq 1 $\end{document}</tex-math></inline-formula> in two dimensions and for <inline-formula><tex-math id="M9">\begin{document}$ r \geq 3 $\end{document}</tex-math></inline-formula> in three dimensions. The global solvability results available in the literature helped us to obtain the uniqueness and stability results for the model with fast growing nonlinearities.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献