Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination

Author:

Kumar Pardeep1,Mohan Manil T.1

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Roorkee-IIT Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India

Abstract

<p style='text-indent:20px;'>In this article, we study an inverse problem for the following convective Brinkman-Forchheimer (CBF) equations:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \boldsymbol{u}_t-\mu \Delta\boldsymbol{u}+(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}+\alpha\boldsymbol{u}+\beta|\boldsymbol{u}|^{r-1}\boldsymbol{u}+\nabla p = \boldsymbol{F}: = \boldsymbol{f} g, \ \ \ \nabla\cdot\boldsymbol{u} = 0, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in bounded domains <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset\mathbb{R}^d $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M2">\begin{document}$ d = 2, 3 $\end{document}</tex-math></inline-formula>) with smooth boundary, where <inline-formula><tex-math id="M3">\begin{document}$ \alpha, \beta, \mu&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ r\in[1, \infty) $\end{document}</tex-math></inline-formula>. The CBF equations describe the motion of incompressible fluid flows in a saturated porous medium. The inverse problem under our consideration consists of reconstructing the vector-valued velocity function <inline-formula><tex-math id="M5">\begin{document}$ \boldsymbol{u} $\end{document}</tex-math></inline-formula>, the pressure gradient <inline-formula><tex-math id="M6">\begin{document}$ \nabla p $\end{document}</tex-math></inline-formula> and the vector-valued function <inline-formula><tex-math id="M7">\begin{document}$ \boldsymbol{f} $\end{document}</tex-math></inline-formula>. We prove the well-posedness result (existence, uniqueness and stability) of an inverse problem for 2D and 3D CBF equations with the final overdetermination condition using Schauder's fixed point theorem for arbitrary smooth initial data. The well-posedness results hold for <inline-formula><tex-math id="M8">\begin{document}$ r\geq 1 $\end{document}</tex-math></inline-formula> in two dimensions and for <inline-formula><tex-math id="M9">\begin{document}$ r \geq 3 $\end{document}</tex-math></inline-formula> in three dimensions. The global solvability results available in the literature helped us to obtain the uniqueness and stability results for the model with fast growing nonlinearities.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3