A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification

Author:

Afraites Lekbir1,Hadri Aissam2,Laghrib Amine1,Nachaoui Mourad1

Affiliation:

1. EMI FST Béni-Mellal, Université Sultan Moulay Slimane, Maroc

2. Laboratoire SIE, Université IBN ZOHR Agadir, Maroc

Abstract

<p style='text-indent:20px;'>We propose a new variational framework to remove a mixture of Gaussian and impulse noise from images. This framework is based on a non-convex PDE-constrained with a fractional-order operator. The non-convex norm is applied to the impulse component controlled by a weighted parameter <inline-formula><tex-math id="M1">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula>, which depends on the level of the impulse noise and image feature. Furthermore, the fractional operator is used to preserve image texture and edges. In a first part, we study the theoretical properties of the proposed PDE-constrained, and we show some well-posdnees results. In a second part, after having demonstrated how to numerically find a minimizer, a proximal linearized algorithm combined with a Primal-Dual approach is introduced. Moreover, a bi-level optimization framework with a projected gradient algorithm is proposed in order to automatically select the parameter <inline-formula><tex-math id="M2">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula>. Denoising tests confirm that the non-convex term and learned parameter <inline-formula><tex-math id="M3">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula> lead in general to an improved reconstruction when compared to results of convex norm and other competitive denoising methods. Finally, we show extensive denoising experiments on various images and noise intensities and we report conventional numerical results which confirm the validity of the non-convex PDE-constrained, its analysis and also the proposed bi-level optimization with learning data.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3