Abstract
<p style='text-indent:20px;'>We study the stability issue for the inverse problem of determining a coefficient appearing in a Schrödinger equation defined on an infinite cylindrical waveguide. More precisely, we prove the stable recovery of some general class of non-compactly and non periodic coefficients appearing in an unbounded cylindrical domain. We consider both results of stability from full and partial boundary measurements associated with the so called Dirichlet-to-Neumann map.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Modelling and Simulation,Analysis,Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献