Overcomplete representation in a hierarchical Bayesian framework

Author:

Pragliola Monica,Calvetti Daniela,Somersalo Erkki

Abstract

<p style='text-indent:20px;'>A common task in inverse problems and imaging is finding a solution that is sparse, in the sense that most of its components vanish. In the framework of compressed sensing, general results guaranteeing exact recovery have been proven. In practice, sparse solutions are often computed combining <inline-formula><tex-math id="M1">\begin{document}$ \ell_1 $\end{document}</tex-math></inline-formula>-penalized least squares optimization with an appropriate numerical scheme to accomplish the task. A computationally efficient alternative for finding sparse solutions to linear inverse problems is provided by Bayesian hierarchical models, in which the sparsity is encoded by defining a conditionally Gaussian prior model with the prior parameter obeying a generalized gamma distribution. An iterative alternating sequential (IAS) algorithm has been demonstrated to lead to a computationally efficient scheme, and combined with Krylov subspace iterations with an early termination condition, the approach is particularly well suited for large scale problems. Here the Bayesian approach to sparsity is extended to problems whose solution allows a sparse coding in an overcomplete system such as composite frames. It is shown that among the multiple possible representations of the unknown, the IAS algorithm, and in particular, a hybrid version of it, is effectively identifying the most sparse solution. Computed examples show that the method is particularly well suited not only for traditional imaging applications but also for dictionary learning problems in the framework of machine learning.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis,Control and Optimization,Discrete Mathematics and Combinatorics,Modelling and Simulation,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian sparsity and class sparsity priors for dictionary learning and coding;Journal of Computational Mathematics and Data Science;2024-06

2. Adaptive anisotropic Bayesian meshing for inverse problems;Inverse Problems;2024-02-23

3. Bayesian hierarchical dictionary learning;Inverse Problems;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3