Author:
Viani Alessandro,Luria Gianvittorio,Sorrentino Alberto,Bornfleth Harald
Abstract
<p style='text-indent:20px;'>We present a very simple yet powerful generalization of a previously described model and algorithm for estimation of multiple dipoles from magneto/electro-encephalographic data. Specifically, the generalization consists in the introduction of a log-uniform hyperprior on the standard deviation of a set of conditionally linear/Gaussian variables. We use numerical simulations and an experimental dataset to show that the approximation to the posterior distribution remains extremely stable under a wide range of values of the hyperparameter, virtually removing the dependence on the hyperparameter.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Modelling and Simulation,Analysis,Control and Optimization,Discrete Mathematics and Combinatorics,Modelling and Simulation,Analysis
Reference37 articles.
1. Z. A. Acar, S. Makeig.Neuroelectromagnetic forward head modeling toolbox, Journal of Neuroscience Methods, 190 (2010), 258-270.
2. C. Aguerrebere, A. Almansa, J. Delon, Y. Gousseau, P. Musé.A bayesian hyperprior approach for joint image denoising and interpolation, with an application to hdr imaging, IEEE Transactions on Computational Imaging, 3 (2017), 633-646.
3. A. F. Ansari, H. Soh.Hyperprior induced unsupervised disentanglement of latent representations, Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 3175-3182.
4. J. Ballé, D. Minnen, S. Singh, S. J. Hwang and N. Johnston, Variational image compression with a scale hyperprior, preprint, (2018), arXiv: 1802.01436.
5. D. Calvetti, H. Hakula, S. Pursiainen, E. Somersalo.Conditionally gaussian hypermodels for cerebral source localization, SIAM Journal on Imaging Sciences, 2 (2009), 879-909.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献