Coupled effects of channels and synaptic dynamics in stochastic modelling of healthy and Parkinson's-disease-affected brains

Author:

Thieu Thi Kim Thoa1,Melnik Roderick12

Affiliation:

1. M3AI Laboratory, MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada

2. BCAM - Basque Center for Applied Mathematics, Bilbao, Spain

Abstract

<abstract> <p>Our brain is a complex information processing network in which the nervous system receives information from the environment to quickly react to incoming events or learns from experience to sharp our memory. In the nervous system, the brain states translate collective activities of neurons interconnected via synaptic connections. In this paper, we study coupled effects of channels and synaptic dynamics under the stochastic influence of healthy brain cells with applications to Parkinson's disease (PD). In particular, we investigate the effects of random inputs in a subthalamic nucleus (STN) cell membrane potential model. The STN bursting phenomena and parkinsonian hypokinetic motor symptoms are closely connected, as electrical and chemical maneuvers modulating STN bursts are sufficient to ameliorate or mimic parkinsonian motor deficits. Deep brain stimulation (DBS) of the STN is an important surgical technique used in the treatment to improve PD symptoms. Our numerical results show that the random inputs strongly affect the spiking activities of the STN neuron not only in the case of healthy cells but also in the case of PD cells in the presence of DBS treatment. Specifically, the existence of a random refractory period together with random input current in the system may substantially influence an increased irregularity of spike trains of the output neurons.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3