Performance evaluation of brain state discrimination using near-infrared spectroscopy for brain-computer interface: an exploratory case study

Author:

Masuo Akira12,Sakuma Takuto2,Kato Shohei2

Affiliation:

1. Faculty of Business Administration, Seijoh University, Aichi, Japan

2. Graduate School of Engineering, Nagoya Institute of Technology, Aichi, Japan

Abstract

<abstract> <p>A new method of environmental control that does not depend on motor functions is eagerly awaited to support independent living for people with severe quadriplegia. In this study, we conducted an exploratory case study of brain state discrimination in a quadriplegic subject to develop a brain-computer interface controlled by a mental task execution. We measured near-infrared spectroscopy (NIRS) signals in a patient with a cervical spinal cord injury while performing mental tasks. A block design with a task and a rest separated by 30 seconds was used to measure brain function. The utilized mental tasks were mental arithmetic and Japanese word chains. Seventeen trials of the NIRS signal were acquired for each task, and 52 samples with 24-dimensional features per trial data were extracted. Random forest was used as the classifier, and the number of correct responses in the binary discrimination of the brain states were calculated by cross-validation. The exact binomial test was used for the statistical analysis, and a two-tailed test with a significance level of 5% was performed. The results showed that the number of correct responses was 15 out of 17 (p = 0.002) for the mental arithmetic task and 14 out of 17 (p = 0.013) for the Japanese word chains task, for an overall accuracy of 85%. These results indicate that this method can discriminate the brain state of a patient with quadriplegia from the NIRS signal. By applying these findings to a brain-computer interface, it will be possible to provide a new means of environmental control for individuals with quadriplegia.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3