Robust QRS complex detection in noisy electrocardiogram based on underdamped periodic stochastic resonance

Author:

Guo Zheng1,Li Siqi2,Chen Kaicong3,Zang Xuehui1

Affiliation:

1. Orthopedics Department of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528042, China

2. Advanced Research Center, GD Midea Equipment Co.,Ltd, Foshan 528000, China

3. Cardiovascular Department of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528042, China

Abstract

<abstract> <p>Robust QRS detection is crucial for accurate diagnosis and monitoring of cardiovascular diseases. During the detection process, various types of noise and artifacts in the electrocardiogram (ECG) can degrade the accuracy of algorithm. Previous QRS detectors have employed various filtering methods to minimize the negative impact of noise. However, their performance still significantly deteriorates in large-noise environments. To further enhance the robustness of QRS detectors on noisy electrocardiograms (ECGs), we proposed a QRS detection algorithm based on an underdamped. This method utilizes the period nonlinearity-induced stochastic resonance to enhance QRS complexes while suppressing noise and non-QRS components in the ECG. In contrast to neural network-based algorithms, our proposed algorithm does not rely on large datasets or prior knowledge. Through testing on three widely used ECG datasets, we demonstrated that the proposed algorithm achieves state-of-the-art detection performance. Furthermore, compared to traditional stochastic resonance-based method, our algorithm has increased noise robustness by 25% to 100% across various real-world environments. This enables the proposed method to maintain its optimal performance within a certain range even in the presence of additional injected noise, thus providing an excellent approach for robust QRS detection in noisy ECGs.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3