Computational approach using machine learning modelling for optimization of transesterification process for linseed biodiesel production

Author:

Gautam Sunil1,Kanakraj Sangeeta2,Henry Azriel3

Affiliation:

1. Department of Computer Science and Engineering, Institute of Technology, Nirma University Ahmedabad, Gujarat, India

2. Managed Network Subject Expert Chegg India Pvt. Ltd. New Delhi, India

3. Department of Computer Sciences and Engineering, Institute of Advanced Research, Gandhinagar, Gujarat, India

Abstract

<abstract> <p>In this research work, various machine learning models such as linear regression (LR), KNN and MLP were created to predict the optimized synthesis of biodiesel from pre-treated and non-treated Linseed oil in base transesterification reaction mode. Three input parameters were included for modelling, reaction time, catalyst concentrated ion, and methanol/oil-molar ratio. In biodiesel transesterification reaction 180 samples run with non-Pre-treated Linseed Methyl Ester (NPLME), Water Pre-treated Linseed Methyl Ester (WPLME) and Enzymatic Pre-treated Linseed Methyl Ester (EPLME) oil as feed stocks and optimized parameters are find out for maximum biodiesel yield to be 8:1 molar ratio, 0.4% weight catalyst, 60 °C reaction temperature.To test the technique, R<sup>2</sup> and MAPE parameters were used. The average R<sup>2</sup> values for linear regression, KNN, and MLP are 0.7030, 0.8554 and 0.7864 respectively. Moreover, the average MAPE values for these models are 11.1886, 6.0873 and 8.0669 respectively. Hence, it is observed that the KNN model outperforms other models with higher accuracy and low MAPE score.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3