Cardiovascular disease prediction using hyperparameters-tuned LSTM considering COVID-19 with experimental validation

Author:

Rao Kuna Dhananjay1,Kumar Mudunuru Satya Dev1,Pavani Paidi2,Akshitha Darapureddy1,Rao Kagitha Nagamaleswara1,Rauf Hafiz Tayyab3,Sharaf Mohamed4

Affiliation:

1. Department of Electrical and Electronics Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India

2. Department of Electronics &Communication Engineering, Dhanekula Institute of Engineering and Technology, Vijayawada, India

3. Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK

4. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

<abstract> <p>Heart disease, globally recognized as a leading cause of death, has seen its impact magnified by the emergence of COVID-19. The heightened demand for early detection and diagnosis of heart disease has forced the development of innovative, intelligent systems. This research offers a novel approach by leveraging extended short-term memory networks (LSTM) and including COVID-19 as a significant parameter in cardiac arrest analysis. A comparative study is conducted between LSTM and other prevalent techniques, such as support vector machines (SVM), linear regression (LR), and artificial neural networks (ANN), focusing on accuracy and other prognostic criteria for heart disease. We aim to develop an intelligent system powered by LSTM to predict heart disease, thereby assisting healthcare professionals in making well-informed decisions about heart disease management, stroke prevention, and patient monitoring. Additionally, hyperparameter tuning has been performed to optimize the LSTM model's performance in cardiac arrest prediction. The results underscore that LSTM, especially when trained with COVID-19 as an input parameter, surpasses other established techniques in prediction accuracy. The proposed model underwent experimental testing, showcasing its proficiency in predicting cardiovascular disease.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3