Time-adaptive Lagrangian variational integrators for accelerated optimization

Author:

Duruisseaux Valentin,Leok Melvin

Abstract

<abstract><p>A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup> and <sup>[<xref ref-type="bibr" rid="b2">2</xref>]</sup>. It was observed that a careful combination of time-adaptivity and symplecticity in the numerical integration can result in a significant gain in computational efficiency. It is however well known that symplectic integrators lose their near-energy preservation properties when variable time-steps are used. The most common approach to circumvent this problem involves the Poincaré transformation on the Hamiltonian side, and was used in <sup>[<xref ref-type="bibr" rid="b3">3</xref>]</sup> to construct efficient explicit algorithms for symplectic accelerated optimization. However, the current formulations of Hamiltonian variational integrators do not make intrinsic sense on more general spaces such as Riemannian manifolds and Lie groups. In contrast, Lagrangian variational integrators are well-defined on manifolds, so we develop here a framework for time-adaptivity in Lagrangian variational integrators and use the resulting geometric integrators to solve optimization problems on vector spaces and Lie groups.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Geometry and Topology,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Physical Correctness of Models Using Classical and Variational Integrators;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

2. Practical perspectives on symplectic accelerated optimization;Optimization Methods and Software;2023-06-08

3. Bregman dynamics, contact transformations and convex optimization;Information Geometry;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3