Author:
Liu Siyu, ,Shen Mingwang,Bi Yingjie, ,
Abstract
<abstract>
<p>Vaccination strategy is considered as the most cost-effective intervention measure for controlling diseases. It will strengthen the immunity and reduce the risks of infections. In this paper, a new delayed epidemic model with interim-immune and mixed vaccination strategy is studied. The diseasefree periodic solution is obtained by twice stroboscopic mapping and the corresponding dynamical behavior is analyzed. We determine a threshold parameter <italic>R</italic><sub>1</sub>, the disease-free periodic solution is proved to be global attractive if <italic>R</italic><sub>1</sub> < 1. We also establish a threshold parameter <italic>R</italic><sub>2</sub> for the permanence of the model, i.e., if <italic>R</italic><sub>2</sub> > 1, the infectious disease will exist persistently. Then, we provide numerical simulations to illustrate our theoretical results intuitively. In particular, a practical application for newtype TB vaccine under mixed vaccination strategy is presented, based on the proposed theory and the data reported by NBSC. The mixed vaccination strategy can achieve the End TB goal formulated by WHO in limited time. Our study will help public health agency to design mixed control strategy which can reduce the burden of infectious diseases.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference28 articles.
1. World Health Organization, The world health report 2007-A safer future: global public health securit in the 21st century, Geneva, 2007.
2. A. Henao-Restrepo, I. Longini, M. Egger, N. Dean, W. Edmunds, A. Camacho, et al., Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results form the Guinea ring vaccination cluster-randomised trial, Lancet, 386 (2015), 857-866.
3. I. Al-Darabsah, Y. Yuan, A time-delayed epidemic model for Ebola disease transmission, Appl. Math. Comput., 290 (2016), 307-325.
4. M. De la Sen, A. Ibeas, S. Alonso-Quesada, R. Nistal, On a new epidemic model with asymptomatic and dead-infective subpopulations with feedback controls useful for Ebola disease, Discrete Dyn. Nat. Soc., 2017 (2017), 1-22.
5. World Health Organization, WHO adapts Ebola vaccination strategy in the Democratic Republic of the Congo to account for insecurity and community feedback, Geneva, 2019. Available from: https://www.who.int/news-room/detail/07-05-2019-who-adapts-ebola-vaccination-strategyin-the-democratic-republic-of-the-congo-to-account-for-insecurity-and-community-feedback.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献