Author:
Rooijakkers M. J., ,Rabotti C.,Oei S. G.,Mischi M., ,
Abstract
<abstract>
<p>Monitoring the progression of uterine activity provides important prognostic information during pregnancy and delivery. Currently, uterine activity monitoring relies on direct or indirect mechanical measurements of intrauterine pressure (IUP), which are unsuitable for continuous long-term observation. The electrohysterogram (EHG) provides a non-invasive alternative to the existing methods and is suitable for long-term ambulatory use. Several published state-of-the-art methods for EHG-based IUP estimation are here discussed, analyzed, optimized, and compared. By means of parameter space exploration, key parameters of the methods are evaluated for their relevance and optimal values. We have optimized all methods towards higher IUP estimation accuracy and lower computational complexity. Their accuracy was compared with the gold standard accuracy of internally measured IUP. Their computational complexity was compared based on the required number of multiplications per second (MPS). Significant reductions in computational complexity have been obtained for all published algorithms, while improving IUP estimation accuracy. A correlation coefficient of 0.72 can be obtained using fewer than 120 MPS. We conclude that long-term ambulatory monitoring of uterine activity is possible using EHG-based methods. Furthermore, the choice of a base method for IUP estimation is less important than the correct selection of electrode positions, filter parameters, and postprocessing methods. The presented review of state-of-the-art methods and applied optimizations show that long-term ambulatory IUP monitoring is feasible using EHG measurements.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modelling and Simulation,General Medicine
Reference54 articles.
1. D. R. Mattison, K. Damus, E. Fiore, J. Petrini, C. Alter, Preterm delivery: A public health perspective, Paediatr. Perinat. Epidemiol., 15 (2001), 7-16.
2. R. L. Goldberg, E. M. McClure, Preterm Birth: Prevention and Management, John Wiley & Sons, (2010), 22-38.
3. R. L Goldenberg, J. F. Culhane, J. D. Iams, R. Romero, Epidemiology and causes of preterm birth, The Lancet, 371 (2008), 75-84.
4. H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, et al., National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications, The Lancet, 379 (2012), 2162-2172.
5. K. Flood, F. D. Malone, Prevention of preterm birth, Semin. Fetal Neonat. Med., 17 (2012), 58-63.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献