Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting

Author:

Sun Guangxun, ,Dai Binxiang

Abstract

<abstract> <p>Based on ecological significance, a delayed diffusive predator-prey system with food-limited and nonlinear harvesting subject to the Neumann boundary conditions is investigated in this paper. Firstly, the sufficient conditions of the stability of nonnegative constant steady state solutions of system are derived. The existence of Hopf bifurcation is obtained by analyzing the associated characteristic equation and the conditions of Turing instability are derived when the system has no delay. Furthermore, the occurrence conditions the Hopf bifurcation are discussed by regarding delay expressing the gestation time of the predator as the bifurcation parameter. Secondly, by using upper-lower solution method, the global asymptotical stability of a unique positive constant steady state solution of system is investigated. Moreover, we also give the detailed formulas to determine the direction, stability of Hopf bifurcation by applying the normal form theory and center manifold reduction. Finally, numerical simulations are carried out to demonstrate our theoretical results.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3