Author:
Manzini Gianmarco,Mazzia Annamaria
Abstract
<p style='text-indent:20px;'>The Virtual Element Method (VEM) is a Galerkin approximation method that extends the Finite Element Method (FEM) to polytopal meshes. In this paper, we present a conforming formulation that generalizes the Scott-Vogelius finite element method for the numerical approximation of the Stokes problem to polygonal meshes in the framework of the virtual element method. In particular, we consider a straightforward application of the virtual element approximation space for scalar elliptic problems to the vector case and approximate the pressure variable through discontinuous polynomials. We assess the effectiveness of the numerical approximation by investigating the convergence on a manufactured solution problem and a set of representative polygonal meshes. We numerically show that this formulation is convergent with optimal convergence rates except for the lowest-order case on triangular meshes, where the method coincides with the <inline-formula><tex-math id="M1">\begin{document}$ {\mathbb{P}}_{{1}}-{\mathbb{P}}_{{0}} $\end{document}</tex-math></inline-formula> Scott-Vogelius scheme, and on square meshes, which are situations that are well-known to be unstable.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Medicine,Computational Mathematics,Computational Mechanics
Reference79 articles.
1. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
2. B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, A. Russo.Equivalent projectors for virtual element methods, Comput. Math. Appl., 66 (2013), 376-391.
3. P. F. Antonietti, L. Beirão da Veiga, D. Mora, M. Verani.A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 52 (2014), 386-404.
4. P. F. Antonietti, G. Manzini, M. Verani.The fully nonconforming Virtual Element method for biharmonic problems, Math. Models Methods Appl. Sci., 28 (2018), 387-407.
5. P. F. Antonietti, G. Manzini, M. Verani.The conforming virtual element method for polyharmonic problems, Comput. Math. Appl., 79 (2020), 2021-2034.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献