Author:
Lacitignola Deborah,Frittelli Massimo,Cusimano Valerio,De Gaetano Andrea
Abstract
<p style='text-indent:20px;'>In this study, the formation of the adult sea urchin shape is rationalized within the Turing's theory paradigm. The emergence of protrusions from the expanding underlying surface is described through a reaction-diffusion model with Gray-Scott kinetics on a growing oblate spheroid. The case of slow exponential isotropic growth is considered. The model is first studied in terms of the spatially homogenous equilibria and of the bifurcations involved. Turing diffusion-driven instability is shown to occur and the impact of the slow exponential growth on the resulting Turing regions adequately discussed. Numerical investigations validate the theoretical results showing that the combination between an inhibitor and an activator can result in a distribution of spot concentrations that underlies the development of ambulacral tentacles in the sea urchin's adult stage. Our findings pave the way for a model-driven experimentation that could improve the current biological understanding of the gene control networks involved in patterning.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Medicine,Computational Mathematics,Computational Mechanics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献