Abstract
<p style='text-indent:20px;'>Covariant Lyapunov Vectors (CLVs) are intrinsic modes that describe long-term linear perturbations of solutions of dynamical systems. With recent advances in the context of semi-invertible multiplicative ergodic theorems, existence of CLVs has been proved for various infinite-dimensional scenarios. Possible applications include the derivation of coherent structures via transfer operators or the stability analysis of linear perturbations in models of increasingly higher resolutions.</p><p style='text-indent:20px;'>We generalize the concept of Ginelli's algorithm to compute CLVs in Hilbert spaces. Our main result is a convergence theorem in the setting of [<xref ref-type="bibr" rid="b19">19</xref>]. The theorem relates the speed of convergence to the spectral gap between Lyapunov exponents. While the theorem is restricted to the above setting, our proof requires only basic properties that are given in many other versions of the multiplicative ergodic theorem.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Computational Mathematics,Computational Mechanics,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献