Abstract
<p style='text-indent:20px;'>We examine the complexity of constructing reduced order models for subsets of the variables needed to represent the state of the power grid. In particular, we apply model reduction techniques to the DeMarco-Zheng power grid model. We show that due to the oscillating nature of the solutions and the absence of timescale separation between resolved and unresolved variables, the construction of accurate reduced models becomes highly non-trivial because one has to account for long memory effects. In addition, we show that a reduced model that includes even a short memory is drastically better than a memoryless model.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Medicine,Computational Mathematics,Computational Mechanics