Iris-Fingerprint multimodal biometric system based on optimal feature level fusion model

Author:

Kamlaskar Chetana, ,Abhyankar Aditya,

Abstract

<abstract><p>For reliable and accurate multimodal biometric based person verification, demands an effective discriminant feature representation and fusion of the extracted relevant information across multiple biometric modalities. In this paper, we propose feature level fusion by adopting the concept of canonical correlation analysis (CCA) to fuse Iris and Fingerprint feature sets of the same person. The uniqueness of this approach is that it extracts maximized correlated features from feature sets of both modalities as effective discriminant information within the features sets. CCA is, therefore, suitable to analyze the underlying relationship between two feature spaces and generates more powerful feature vectors by removing redundant information. We demonstrate that an efficient multimodal recognition can be achieved with a significant reduction in feature dimensions with less computational complexity and recognition time less than one second by exploiting CCA based joint feature fusion and optimization. To evaluate the performance of the proposed system, Left and Right Iris, and thumb Fingerprints from both hands of the SDUMLA-HMT multimodal dataset are considered in this experiment. We show that our proposed approach significantly outperforms in terms of equal error rate (EER) than unimodal system recognition performance. We also demonstrate that CCA based feature fusion excels than the match score level fusion. Further, an exploration of the correlation between Right Iris and Left Fingerprint images (EER of 0.1050%), and Left Iris and Right Fingerprint images (EER of 1.4286%) are also presented to consider the effect of feature dominance and laterality of the selected modalities for the robust multimodal biometric system.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3