Machine learning assessment of IoT managed microgrid protection in existence of SVC using wavelet methodology

Author:

Lakshmi K.V. Dhana1,Panigrahi P.K.1,Goli Ravi kumar2

Affiliation:

1. Department of Electrical and Electronics Engineering, GIET University, Gunupur, Odisha, India

2. Department of Electrical and Electronics Engineering, Bapatla Engineering college, Bapatla, AndhraPradesh, India

Abstract

<abstract><p>In the last decade, research has been started due to accelerated growth in power demand has mainly concentrated on the large power production and quality of power. After the digital revolution, non-conventional energy sources, many state-of-art equipment, power electronics loads, reactive power compensating devices, sophisticated measuring devices, etc., entered the power industry. The reactive power compensating devices, connected electrical equipment, renewable energy sources can be anticipated/unanticipated action can cause considerable reactions may be failure issues to power grids. To deal with these challenges, the power sector crucially needs to design and implement new security systems to protect its systems. The Internet-of-Things (IoT) is treated as revolution technology after the invention of the digital machine and the internet. New developments in sensor devices with wireless technologies through embedded processors provide effective monitoring and different types of faults can be detected during electric power transmission. The wavelet (WT) is one of the mathematical tools to asses transient signals of different frequencies and provides crucial information in the form of detailed coefficients. Machine learning (ML) methods are recommended in the power systems community to simplify digital reform. ML and AI techniques can make effective and rapid decisions to improve the stability and safety of the power grid. This recommended approach can contribute critical information about symmetrical or asymmetrical faults through machine learning assessment of IoT supervised microgrid protection in the presence of SVC using the wavelet approach covers diversified types of faults combined with fault-inception-angles (FIA).</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3