Performance analysis of insertion loss incorporated hybrid precoding for massive MIMO

Author:

Abose Tadele A.1,Olwal Thomas O.2,Mohammed Muna M.3,Hassen Murad R.4

Affiliation:

1. Department of Electrical and Computer Engineering, Mattu University, Mattu, 318, Ethiopia

2. Department of Electrical Engineering/F'SATI, Tshwane University of Technology, Pretoria, 0001, South Africa

3. School of Electrical and Computer Engineering, Dire Dawa University, Dire Dawa, 1362, Ethiopia

4. School of Electrical and Computer Engineering, Addis Ababa University, Addis Ababa, 1176, Ethiopia

Abstract

<abstract> <p>Due to an increase in the number of users and a high demand for high data rates, researchers have resorted to boosting the capacity and spectral efficiency of the next-generation wireless communication. With a limited RF chain, hybrid analog digital precoding is an appealing alternative. The hybrid precoding approach divides the beamforming process into an analog beamforming network and a digital beamforming network of a reduced size. As a result, numerous hybrid beamforming networks have been proposed. The practical effects of signal processing in the RF domain, such as the additional power loss incurred by an analog beamforming network, were not taken into account. The effectiveness of hybrid precoding structures for massive MIMO systems was examined in this study. In particular, a viable hardware network realization with insertion loss was developed. Investigating the spectral and energy efficiency of two popular hybrid precoding structures, the fully connected structure, and the subconnected structure, it was found that in a massive MIMO, the subconnected structure always performed better than the fully connected structure. Characterizing the effect of quantized analog precoding, it was shown that the subconnected structure was able to achieve better performance with fewer feedback bits than the fully connected structure.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3