Adaptive PID sliding mode control based on new Quasi-sliding mode and radial basis function neural network for Omni-directional mobile robot

Author:

Pham Thanh Tung1,Nguyen Chi-Ngon2

Affiliation:

1. Vinh Long University of Technology Education, Vietnam

2. Can Tho University, Vietnam

Abstract

<abstract> <p>This article designs a PID sliding mode controller based on new Quasi-sliding mode (PID-SMC-NQ) and radial basis function neural network (RBFNN) for Omni-directional mobile robot. This is holonomic vehicles that can perform translational and rotational motions independently and simultaneously. The PID-SMC is designed to ensure that the robot's actual trajectory follows the desired in a finite time with the error converges to zero. To decrease chattering phenomena around the sliding surface, in the controller robust term, this paper uses the <italic>tanh</italic> (hyperbolic tangent) function, so called the new Quasi-sliding mode function, instead of the switch function. The RBFNN is used to approximate the nonlinear component in the PID-SMC-NQ controller. The RBFNN is considered as an adaptive controller. The weights of the network are trained online due to the feedback from output signals of the robot using the Gradient Descent algorithm. The stability of the system is proven by Lyapunov's theory. Simulation results in MATLAB/Simulink show the effectiveness of the proposed controller, the actual response of the robot converges to the reference with the rising time reaches 307.711 ms, 364.192 ms in the x-coordinate in the two-dimensional movement of the robot<italic>,</italic> the steady-state error is 0.0018 m and 0.00007 m, the overshoot is 0.13% and 0.1% in the y-coordinate, and the chattering phenomena is reduced.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3