Robust CNN for facial emotion recognition and real-time GUI

Author:

Ali Imad1,Ghaffar Faisal2

Affiliation:

1. Department of Computer Science, University of Swat, Swat, KP, Pakistan

2. System Design Engineering Department, University of Waterloo, Waterloo, Canada

Abstract

<abstract> <p>Computer vision is witnessing a surge of interest in machines accurately recognizing and interpreting human emotions through facial expression analysis. However, variations in image properties such as brightness, contrast, and resolution make it harder for models to predict the underlying emotion accurately. Utilizing a robust architecture of a convolutional neural network (CNN), we designed an efficacious framework for facial emotion recognition that predicts emotions and assigns corresponding probabilities to each fundamental human emotion. Each image is processed with various pre-processing steps before inputting it to the CNN to enhance the visibility and clarity of facial features, enabling the CNN to learn more effectively from the data. As CNNs entail a large amount of data for training, we used a data augmentation technique that helps to enhance the model's generalization capabilities, enabling it to effectively handle previously unseen data. To train the model, we joined the datasets, namely JAFFE and KDEF. We allocated 90% of the data for training, reserving the remaining 10% for testing purposes. The results of the CCN framework demonstrated a peak accuracy of 78.1%, which was achieved with the joint dataset. This accuracy indicated the model's capability to recognize facial emotions with a promising level of performance. Additionally, we developed an application with a graphical user interface for real-time facial emotion classification. This application allows users to classify emotions from still images and live video feeds, making it practical and user-friendly. The real-time application further demonstrates the system's practicality and potential for various real-world applications involving facial emotion analysis.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3