Assessing the stability of the reservoir rim in moraine deposits for a mega RCC dam

Author:

Ahmad Khalid1,Ali Umair23,Farooq Khalid4,Shah Syed Kamran Hussain5,Umar Muhammad6

Affiliation:

1. Riyadh Geotechnique & Foundations Co., Al-Khobar 31952, Saudi Arabia

2. Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

3. Interdisciplinary Research Centre for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

4. Department of Civil Engineering, University of Engineering and Technology, Lahore 54890, Pakistan

5. National Institute of Transportation - Risalpur, National University of Sciences and Technology, Islamabad 23200, Pakistan

6. Department of Civil Engineering, National University of Computer and Emerging Sciences, Lahore 54770, Pakistan

Abstract

<abstract> <p>Diamer Basha Dam is an under-construction, 272-meter-high, roller compacted concrete (RCC) dam on the Indus River in Pakistan. Once constructed, it will be the world's highest RCC gravity dam with a 105-kilometer-long reservoir. Most of the reservoir lies in unstable moraine deposits with steep slopes. Events like saturation during reservoir filling, alternate wetting, drawdown during reservoir operation, or a seismic event could trigger a large mass movement of these slopes into the reservoir to disrupt the dam functionality. This work identified the 15 most vulnerable slide areas using digital slope maps, elevation maps, and satellite imagery. Deterministic slope stability analysis was carried out on the identified sections under various stages of reservoir operation for static and seismic loading, using pseudo-static and dynamic analysis approaches. Probabilistic analysis was then performed using Monte Carlo simulation. The findings showed that most moraine deposits would collapse under reservoir filling, rapid drawdown, or seismic activity. Following the assessments, landslide susceptibility maps were generated, and an assessment of potential impacts, including the generation of dynamic waves, reservoir blockage, increased sediment loads, and reduced reservoir storage capacity, was also performed.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3