The impact of climate change on China's central region grain production: evidence from spatiotemporal pattern evolution

Author:

Wang Hongtao1,Xu Jiajun2,Lim Noor Hashimah Hashim3,Liao Wanying4,Fong Chng Saun2

Affiliation:

1. College of Urban and Environmental Sciences, Central China Normal University, 430079 Wuhan, Hubei, China

2. Institute for Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

3. Faculty of Built Environment, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

4. Faculty of Arts and Social Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

Under the influence of global climate change, the climatic conditions of China's major agricultural regions have changed significantly over the last half-century, affecting regional grain production levels. With its favorable conditions for agricultural activities, China's central region has been a strategic location for grain production since ancient times and has assumed an essential responsibility for maintaining national grain security. However, the key concerns of this study are whether the national grain security pattern is stable and whether it might be affected by global climate change (especially climate instability and increased risks in recent years). Therefore, the present study collected grain production data and used descriptive statistical and geospatial analyses to reveal the trend and spatiotemporal pattern of grain production in China's central region from 2010 to 2020. Then, a further analysis was conducted by combining meteorological data with a geographically weighted regression (GWR) model to investigate the relationship between spatial differences in the output per unit of the grain sown area (OPUGSA). The findings were as follows: (1) The overall development trend of grain production in China's central region from 2010 to 2020 revealed a positive overall trend in grain production, with notable differences in growth rates between northern and southern provinces. (2) Most regions in the southern part of the central region from 2015 to 2020 showed varying degrees of total output of grain (TOG) and OPUGSA reduction, possibly affected by the effects of the anomalies for global climate change and a strong El Niño effect in 2015. (3) Low-low (L-L) clusters of TOG and OPUGSA indicators were consistently in the northwest part (Shanxi) of the central region, and high-high (H-H) clusters of TOG were consistently in the central part (Henan and Anhui) of the central region, but H-H clusters of OPUGSA were not stably distributed. (4) The fitting results of the GWR model showed a better fit compared to the ordinary least squares (OLS) model; it was found that the annual average temperature (AAT) had the greatest impact on OPUGSA, followed by annual sunshine hours (ASH) and annual precipitation (AP) last. The spatiotemporal analysis identified distinct clusters of productivity indicators. It suggested an expanding range of climate impact possibilities, particularly in exploring climate-resilient models of grain production, emphasizing the need for targeted adaptation strategies to bolster resilience and ensure agricultural security.

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3