Affiliation:
1. Department of Chemical Engineering Materials Environment (DICMA), Sapienza University of Rome, Rome, Italy
2. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 157/a, 43124 Parma, Italy
3. Department of Civil, Building and Environmental Engineering (DICEA), Sapienza University of Rome, Rome, Italy
Abstract
<abstract>
<p>Municipal solid waste landfills leachate can cause serious environmental issues for groundwater quality. Therefore, the application of environmental tracing methods to identify groundwater contamination by municipal solid waste landfills leachate is significant. Hydrogeochemical evaluations to trace municipal solid waste landfills leachate are usually carried out. The study was carried out at a landfill in central Italy (Umbria). Samples of leachate and groundwater have been analyzed to evaluate the impact of leachates on groundwater through the comparison of their hydrogeochemical nature. Parameters like pH, Temperature (T), Electrical Conductivity (EC), redox potential (Eh) and Chemical Oxygen Demand (COD) were also measured in situ using digital instruments. Hydrogeochemical data (Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, SO<sub>4</sub><sup>2−</sup>, HCO<sub>3</sub><sup>−</sup>, Cl<sup>−</sup>, NO<sub>3</sub><sup>−</sup>), ionic ratios and geochemical correlations were used to confirm the processes that govern the chemistry of the spring water and to identify leachate contamination phenomena. In fact, the main geochemical diagrams (Langelier-Ludwig, Piper, Schoeller) confirm the leachate contamination in a groundwater sample. In particular, the Piper diagram shows that a sample is in Na<sup>+</sup> – Cl<sup>-</sup> – HCO<sub>3</sub><sup>-</sup> mixing zone, indicating a possible influence of the leachate on groundwater chemistry. As a matter of fact, some correlations between major elements, such as Cl<sup>-</sup> versus Na<sup>+</sup> and Cl<sup>-</sup> versus HCO<sub>3</sub><sup>-</sup>, confirm that the leachate in this study area is highly enriched in Cl<sup>-</sup> and HCO<sub>3</sub><sup>-</sup> due to wastes dissolution and degradation processes. Further, the assessment of K<sup>+</sup>/Mg<sup>2+</sup> ratio also confirms the presence of a sample heavily impacted from leachate contamination. These results indicate that also one basic hydrogeochemical study can be useful for fingerprinting the leachate pollution for groundwater samples.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)