Author:
Barrile Vincenzo,Genovese Emanuela,Cotroneo Francesco
Abstract
<abstract>
<p>Landslides represent a growing threat among the various morphological processes that cause damage to territories. To address this problem and prevent the associated risks, it is essential to quickly find adequate methodologies capable of predicting these phenomena in advance. The following study focuses on the implementation of an experimental WebGIS infrastructure designed and built to predict the susceptibility index of a specific presumably at-risk area in real time (using specific input data) and in response to extreme weather events (such as heavy rain). The climate data values are calculated through an innovative and experimental atmospheric simulator developed by the authors, which is capable of providing data on meteorological variables with high spatial precision. To this end, the terrain is represented through cellular automata, implementing a suitable neural network useful for producing the desired output. The effectiveness of this methodology was tested on two debris flow events that occurred in the Calabria region, specifically in the province of Reggio Calabria, in 2001 and 2005, which caused extensive damage. The (forecast) results obtained with the proposed methodology were compared with the (known) historical data, confirming the effectiveness of the method in predicting (and therefore signaling the possibility of an imminent landslide event) a higher susceptibility index than the known one and one provided (to date) by the Higher Institute for Environmental Protection and Research (ISPRA), validating the result obtained through the actual subsequent occurrence of a landslide event in the area under investigation. Therefore, the method proposed today is not aimed at predicting the local movement of a small landslide area, but is primarily aimed at predicting the change or improving the variation of the landslide susceptibility index to compare the predicted value with the current one provided by the relevant bodies (ISPRA), thus signaling an alert for the entire area under investigation.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference32 articles.
1. Gu T, Duan P, Wang M, et al. (2024) Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping. Sci Rep 14: 7201. https://doi.org/10.1038/s41598-024-57964-5
2. Nwazelibe VE, Egbueri JC, Unigwe CO, et al. (2023) GIS-based landslide susceptibility mapping of Western Rwanda: an integrated artificial neural network, frequency ratio, and Shannon entropy approach. Environ Earth Sci 82: 439. https://doi.org/10.1007/s12665-023-11134-4
3. Unigwe CO, Egbueri JC, Omeka ME, et al. (2023). Landslide Occurrences in Southeastern Nigeria: A Literature Analysis on the Impact of Rainfall. In: Egbueri JC, Ighalo JO, Pande CB (eds), Climate Change Impacts on Nigeria. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-21007-5_18
4. Nwazelibe VE, Unigwe CO, Egbueri JC (2023) Testing the performances of different fuzzy overlay methods in GIS-based landslide susceptibility mapping of Udi Province, SE Nigeria. Catena 20: 106654. https://doi.org/10.1016/j.catena.2022.106654
5. Nwazelibe VE, Unigwe CO, Egbueri JC (2023) Integration and comparison of algorithmic weight of evidence and logistic regression in landslide susceptibility mapping of the Orumba North erosion-prone region, Nigeria. Model Earth Syst Environ 9: 967–986. https://doi.org/10.1007/s40808-022-01549-6